Disproportionately proud of myself. This is very, very late homework. Like 10 years late. (I think I got it right - let me know where the mistakes are, if you see any.)
Theorem:
\(\forall x: (\frac{x}{2} \in \mathbb{Z}) \implies (\frac{x^2}{2} \in \mathbb{Z}) \)Proof:
"The square of an even integer, is always an even integer."
- axiom \(A\):
\(\frac{x}{2} \in \mathbb{Z}\)
"x is an even integer."- axiom \(B\):
\(\times\) (multiplication), an operation, is closed over the set of integers.- lemma \(C\) \(\Longleftarrow B\):
\(\forall y: (\frac{y}{2}\in\mathbb{Z})\Longrightarrow\left((\frac{y}{2} \times 2) = y\right)\in\mathbb{Z})\)
"If y/2 is an integer, then y is an integer."- lemma \(D\) \(\Longleftarrow B\):
\(\forall z: (z\in \mathbb{Z})\implies(z^2 \in \mathbb{Z})\)
"If z is an integer, then z squared is an integer."- lemma \(E\) \(\Longleftarrow (A \wedge D)\):
\(\left((\frac{x}{2})^2 = (\frac{x^2}{4}) = \frac{(\frac{x^2}{2})}{2}\right) \in \mathbb{Z}\)
"(x^2)/4 is an integer."- Theorem \(\Longleftarrow (C \wedge E)\):
\( \left(\frac{(\frac{x^2}{2})}{2} \in \mathbb{Z}\right) \implies \left(\frac{x^2}{2} \in \mathbb{Z}\right) \)
No comments :
Post a Comment